AI Integration Documentation
This section covers all AI-powered features and integrations in the LyfeAI Provider system.
Overview
LyfeAI Provider integrates advanced AI capabilities throughout the healthcare workflow, from document processing to clinical decision support. The system uses OpenAI's GPT-4 as the primary AI engine with fallback mechanisms for reliability.
AI Features
Document Processing
- Document Extraction - Extract structured data from medical documents
- OCR Integration - Process scanned documents and images
- Voice Transcription - Convert voice input to text
Clinical Intelligence
- Clinical Decision Support - AI-powered treatment recommendations
- Risk Assessment - Predictive analytics for patient risks
- Drug Interactions - Medication safety checks
Medical Imaging
- Image Analysis - AI-powered medical image interpretation
- Radiology Reports - Automated report generation
- Progression Tracking - Monitor changes over time
Administrative AI
- Smart Scheduling - Optimize appointment scheduling
- Prior Authorization - Automate insurance approvals
- Quality Measures - Track and improve care quality
Patient Engagement
- AI Chat Assistant - Interactive medical assistant
- Patient Onboarding - Intelligent form completion
- Health Analysis - Comprehensive health assessments
Architecture
AI Service (lib/ai-service.ts)
The core AI service provides:
class AIService {
// Document processing
extractPatientData(document: string): ExtractedPatientData
// Clinical intelligence
generateClinicalInsights(patient: Patient): ClinicalInsights
analyzeMedications(medications: Medication[]): DrugInteractions
// Medical imaging
analyzeImage(imageData: string): ImageAnalysis
// Natural language
generateResponse(prompt: string, context: any): string
}
Integration Pattern
// Server action example
export async function processDocumentWithAI(documentText: string) {
try {
// Call AI service
const extractedData = await aiService.extractPatientData(documentText);
// Validate results
const validated = validateExtractedData(extractedData);
// Store insights
await storeAIInsights(validated);
return { success: true, data: validated };
} catch (error) {
// Fallback handling
return handleAIError(error);
}
}
Configuration
Environment Variables
# Required
OPENAI_API_KEY=your_openai_api_key
# Optional
OPENAI_MODEL=gpt-4-turbo-preview
OPENAI_MAX_TOKENS=4000
OPENAI_TEMPERATURE=0.3
AI_FALLBACK_ENABLED=true
Model Configuration
const modelConfig = {
documentExtraction: {
model: "gpt-4-turbo-preview",
temperature: 0.1, // Low for accuracy
maxTokens: 4000
},
clinicalInsights: {
model: "gpt-4",
temperature: 0.3, // Balanced
maxTokens: 2000
},
conversation: {
model: "gpt-3.5-turbo",
temperature: 0.7, // Higher for natural conversation
maxTokens: 1000
}
};
Prompt Engineering
Best Practices
- Structured Prompts
const prompt = `
You are a medical data extraction specialist.
Task: Extract patient information from the following document.
Requirements:
- Extract demographics (name, DOB, gender)
- Identify medical conditions with ICD-10 codes
- List current medications with dosages
- Note any allergies
Output format: JSON matching the ExtractedPatientData schema.
Document:
${documentText}
`;
- Context Injection
const contextualPrompt = `
Patient Context:
- Age: ${patient.age}
- Conditions: ${patient.conditions.join(', ')}
- Medications: ${patient.medications.join(', ')}
Question: ${userQuestion}
Provide a medically accurate response considering the patient's context.
`;
- Output Validation
const schema = z.object({
demographics: z.object({
firstName: z.string(),
lastName: z.string(),
dateOfBirth: z.string()
}),
confidence: z.number().min(0).max(1)
});
const validated = schema.parse(aiResponse);
Error Handling
Fallback Strategies
- Service Unavailable
if (!aiService.isAvailable()) {
return simulatedAIResponse(input);
}
- Rate Limiting
try {
return await aiService.process(input);
} catch (error) {
if (error.code === 'rate_limit_exceeded') {
await delay(error.retryAfter);
return await aiService.process(input);
}
throw error;
}
- Invalid Responses
const response = await aiService.generate(prompt);
if (!isValidResponse(response)) {
logger.warn('Invalid AI response', { response });
return fallbackResponse();
}
Security & Compliance
PHI Protection
- Data Anonymization
const anonymized = anonymizePatientData(patientData);
const insights = await aiService.analyze(anonymized);
- Audit Logging
await auditLog.record({
action: 'ai_analysis',
userId: currentUser.id,
patientId: patient.id,
aiModel: 'gpt-4',
timestamp: new Date()
});
- Consent Management
if (!patient.aiConsentGiven) {
throw new Error('Patient has not consented to AI analysis');
}
HIPAA Compliance
- No PHI in prompts unless necessary
- Encrypted transmission to AI services
- Audit trails for all AI interactions
- Data retention policies
- Regular security assessments
Performance Optimization
Caching
const cacheKey = `ai_insights_${patient.id}_${hash(data)}`;
const cached = await cache.get(cacheKey);
if (cached) return cached;
const result = await aiService.generateInsights(data);
await cache.set(cacheKey, result, { ttl: 3600 });
return result;
Batch Processing
const batchResults = await aiService.batchProcess(
documents.map(doc => ({
id: doc.id,
prompt: createPrompt(doc)
}))
);
Streaming Responses
const stream = await aiService.streamResponse(prompt);
for await (const chunk of stream) {
yield chunk;
}
Monitoring & Analytics
Metrics to Track
- Response times
- Error rates
- Token usage
- Accuracy scores
- User satisfaction
Dashboard Integration
interface AIMetrics {
totalRequests: number;
averageLatency: number;
errorRate: number;
tokenUsage: {
daily: number;
monthly: number;
};
accuracyScore: number;
}
Testing
Unit Tests
describe('AI Service', () => {
it('extracts patient data correctly', async () => {
const mockResponse = createMockAIResponse();
jest.spyOn(aiService, 'extract').mockResolvedValue(mockResponse);
const result = await processDocument(testDocument);
expect(result.demographics.firstName).toBe('John');
});
});
Integration Tests
it('handles AI service failures gracefully', async () => {
mockAIServiceDown();
const result = await processDocumentWithAI(document);
expect(result.success).toBe(true);
expect(result.usedFallback).toBe(true);
});
Future Enhancements
Planned Features
-
Multi-modal AI
- Combined text and image analysis
- Voice-enabled interactions
- Video consultation analysis
-
Advanced Analytics
- Population health insights
- Predictive modeling
- Treatment outcome prediction
-
Specialized Models
- Radiology-specific AI
- Pathology analysis
- Genomic interpretation
-
Local AI Options
- On-premise deployment
- Edge computing
- Privacy-preserving models